1、等比数列前n项和公式为:Sn=n*a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)(前提:q不等于 1)注意:以上n均属于正整数。
等比数列前n项和公式为:等比数列公式就是在数学上求一定数量的等比数列的和的公式。
等比数列前n项和公式:公式中a1为数列首项,q为等比数列的公比,Sn为前n项和。从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
a1q^(n-1)所以Sn = a1+a1*q^1+...+a1*q^(n-1)(1)qSn =a1*q^1+a1q^2+...+a1*q^n (2)(1)-(2)注意(1)式的第一项不变。把(1)式的第二项减去(2)式的第一项。
而等比数列的前n项和公式为:Sn=a1×(1-r^n)/(1-r)。其中,Sn表示数列的前n项和,a1是数列的第1项,r是固定的比例系数,n是项数。
等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。
)等比数列:a(n+1)/an=q,n为自然数。
1、等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。
2、等比数列前n项和公式:公式中a1为数列首项,q为等比数列的公比,Sn为前n项和。从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
3、而等比数列的前n项和公式为:Sn=a1×(1-r^n)/(1-r)。其中,Sn表示数列的前n项和,a1是数列的第1项,r是固定的比例系数,n是项数。
4、等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。
5、等比数列前n项和公式为:等比数列公式就是在数学上求一定数量的等比数列的和的公式。